4 research outputs found

    Selenoprotein S Attenuates Tumor Necrosis Factor-α-Induced Dysfunction in Endothelial Cells

    No full text
    Endothelial dysfunction, partly induced by inflammatory mediators, is known to initiate and promote several cardiovascular diseases. Selenoprotein S (SelS) has been identified in endothelial cells and is associated with inflammation; however, its function in inflammation-induced endothelial dysfunction has not been described. We first demonstrated that the upregulation of SelS enhances the levels of nitric oxide and endothelial nitric oxide synthase in tumor necrosis factor- (TNF-) α-treated human umbilical vein endothelial cells (HUVECs). The levels of TNF-α-induced endothelin-1 and reactive oxygen species are also reduced by the upregulation of SelS. Furthermore, SelS overexpression blocks the TNF-α-induced adhesion of THP-1 cells to HUVECs and inhibits the increase in intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Moreover, SelS overexpression regulates TNF-α-induced inflammatory factors including interleukin-1β, interleukin-6, interleukin-8, and monocyte chemotactic protein-1 and attenuates the TNF-α-induced activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways. Conversely, the knockdown of SelS with siRNA results in an enhancement of TNF-α-induced injury in HUVECs. These findings suggest that SelS protects endothelial cells against TNF-α-induced dysfunction by inhibiting the activation of p38 MAPK and NF-κB pathways and implicates it as a possible modulator of vascular inflammatory diseases

    Effect of particle size on the microstructure and tensile property of the Al-28.5Si alloy prepared by continuous powder extrusion

    No full text
    Continuous powder extrusion, a new powder consolidation technology, is used to process alloy powders that are difficult to form. In the paper, Al-28.5Si alloys were successfully prepared by continuous powder extrusion, and the influences of particle size on the microstructure and tensile property have been investigated. In the as-extruded rods, the primary Si phase is dispersed in the α -Al matrix. As the powder size reduces from more than 75 μ m to less than 25 μ m, the equivalent diameter of the primary Si particles consecutively decreases, but the shape factor increases. Comparing the Si particles in the alloy rod and the powder, it is found that the eutectic Si phase disappears during continuous extrusion. Primary Si particles change from coarse and irregular to round. Specifically, the ultimate tensile strength and elongation at break of the powder-extruded alloy further increase from 211 MPa to 266 MPa and 0.99% to 2.21%. Moreover, the fracture mechanism of alloy rods is the brittle fracture
    corecore